Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
1.
Front Immunol ; 13: 1051576, 2022.
Artigo em Inglês | MEDLINE | ID: covidwho-2237154

RESUMO

The development of vaccines that can efficiently prevent the infection of SARS-CoV-2 is necessary to fight the COVID-19 epidemic. mRNA vaccine has been proven to induce strong humoral and cellular immunity against SARS-CoV-2. Here, we studied the immunogenicity and protection efficacy of a novel mRNA vaccine SYS6006. High expression of mRNA molecules in 293T cells was detected. The initial and boost immunization with a 21-day interval was determined as an optimal strategy for SYS6006. Two rounds of immunization with SYS6006 were able to induce the neutralizing antibodies against the SARS-CoV-2 wild-type (WT) strain, and Delta and Omicron BA.2 variants in mice or non-human primates (NHPs). A3rd round of vaccination could further enhance the titers of neutralization against Delta and Omicron variants. In vitro ELISpot assay showed that SYS6006 could induce memory B cell and T cell immunities specifically against SARS-CoV-2 in mice. FACS analysis indicated that SYS6006 successfully induced SARS-CoV-2-specific activation of T follicular helper cell (Tfh) and Th1 cell, and did not induce CD4+Th2 response in NHPs. SYS6006 vaccine could significantly reduce the viral RNA loads and prevent lung lesions in Delta variant infected hACE2 transgenic mice. Therefore, SYS6006 could provide significant immune protection against SARS-CoV-2.


Assuntos
COVID-19 , SARS-CoV-2 , Animais , Camundongos , COVID-19/prevenção & controle , Imunização , Camundongos Transgênicos
2.
Clin Infect Dis ; 71(16): 2066-2072, 2020 11 19.
Artigo em Inglês | MEDLINE | ID: covidwho-1153154

RESUMO

BACKGROUND: Thousands of medical staff have been infected with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), with hundreds of deaths reported. Such loss could be prevented if there were a serologic assay for SARS-CoV-2-specific antibodies for serological surveillance of its infection at the early stage of disease. METHODS: Using Chinese hamster ovarian (CHO) cell-expressed full-length SARS-CoV-2 S1 protein as capturing antigen, a coronavirus disease 2019 (COVID-19)/SARS-CoV-2 S1 serology enzyme-linked immunosorbent assay (ELISA) kit was developed and validated with negative samples collected prior to the outbreak or during the outbreak and positive samples from patients confirmed with COVID-19. RESULTS: The specificity of the ELISA kit was 97.5%, as examined against total 412 normal human samples. The sensitivity was 97.1% by testing against 69 samples from hospitalized and/or recovered COVID-19 patients. The overall accuracy rate reached 97.3%. The assay was able to detect SARS-CoV-2 antibody on day 1 after the onset of COVID-19 disease. The average antibody levels increased during hospitalization and 14 days after discharge. SARS-CoV-2 antibodies were detected in 28 of 276 asymptomatic medical staff and 1 of 5 nucleic acid test-negative "close contacts" of COVID-19 patients. CONCLUSIONS: With the assays developed here, we can screen medical staff, incoming patients, passengers, and people who are in close contact with the confirmed patients to identify the "innocent viral spreaders," protect the medical staff, and stop further spread of the virus.


Assuntos
Anticorpos Antivirais/sangue , COVID-19/sangue , COVID-19/epidemiologia , Animais , Células CHO , COVID-19/virologia , Cricetulus , Ensaio de Imunoadsorção Enzimática , SARS-CoV-2/imunologia , SARS-CoV-2/patogenicidade , Testes Sorológicos
3.
Vaccine ; 38(35): 5653-5658, 2020 07 31.
Artigo em Inglês | MEDLINE | ID: covidwho-612504

RESUMO

The COVID-19 outbreak has become a global pandemic responsible for over 2,000,000 confirmed cases and over 126,000 deaths worldwide. In this study, we examined the immunogenicity of CHO-expressed recombinant SARS-CoV-2 S1-Fc fusion protein in mice, rabbits, and monkeys as a potential candidate for a COVID-19 vaccine. We demonstrate that the S1-Fc fusion protein is extremely immunogenic, as evidenced by strong antibody titers observed by day 7. Strong virus neutralizing activity was observed on day 14 in rabbits immunized with the S1-Fc fusion protein using a pseudovirus neutralization assay. Most importantly, in <20 days and three injections of the S1-Fc fusion protein, two monkeys developed higher virus neutralizing titers than a recovered COVID-19 patient in a live SARS-CoV-2 infection assay. Our data strongly suggests that the CHO-expressed SARS-CoV-2 S1-Fc recombinant protein could be a strong candidate for vaccine development against COVID-19.


Assuntos
Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Infecções por Coronavirus/imunologia , Fragmentos Fc das Imunoglobulinas/química , Macaca/imunologia , Pneumonia Viral/imunologia , Glicoproteína da Espícula de Coronavírus/química , Glicoproteína da Espícula de Coronavírus/imunologia , Vacinas Virais/imunologia , Animais , Células CHO , COVID-19 , Vacinas contra COVID-19 , Infecções por Coronavirus/prevenção & controle , Infecções por Coronavirus/terapia , Cricetulus , Feminino , Células HEK293 , Humanos , Imunização Passiva , Fragmentos Fc das Imunoglobulinas/imunologia , Imunoglobulina G/imunologia , Imunoglobulina M/imunologia , Masculino , Camundongos , Pandemias , Coelhos , Soroterapia para COVID-19
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA